China Professional Timing Belt Pulleys Synchronous Pulleys / Htd-5m-15, 8m-85 with Hot selling

Product Description

Product Description

Product Type

XL, H, HTD8M,5M,3M, AT3, AT5 standard gear, or according customer drawing to make.

Material:

Carbon Steel, Brass, Aluminium, Stainless steel, Plastic, POM, Delrin, Titanium Alloy etc.

Process method

CNC Turning, hobbing gear

Surface finish:

Chrome plating, Anodization, Powder coating, blackening, Sand blasting, Brushing & ploshing,Electrophoresis etc.

OEM & ODM Service

Available

Design Software

PRO/E, Auto CAD, Solid Works 

Trade Terms:

FOB,,CIF,EXW

Payment Terms:

T/T, L/C, 

Packing:

 Foam, Carton, Standard Wooden boxes

Capacity

8,000~1,5000 pcs per month

Delivery 

20-30 days after receiving PO

Applications

Automotive Parts,hydraulics, compressors,Industrial equipments, transmission parts, etc.

Our services:

CNC Machining, Milling, Stamping, Sheet metal fabricating, and Die-Casting

Product show

  

Manufacture process

FAQ
Q1. What is your terms of packing?
A: Generally, we pack our goods in single color box. If you have special request about packing, pls negotiate with us in advance, we can pack the goods as your request.

Q2. What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages 
before you pay the balance. Other payments terms, pls negotiate with us in advance, we can discuss.

Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF.

Q4. How about your delivery time?
A: Generally, it will take 25 to 30 days after receiving your advance payment. The specific delivery time depends 
on the items and the quantity of your order.

Q5. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and 
the courier cost.We welcome sample order.

Q7. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery

Q8: How do you make our business long-term and good relationship?
1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, 
no matter where they come from.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO
Pulley Sizes: Type C
Manufacturing Process: Cutting Tooth
Material: Aluminum Alloy
Surface Treatment: Oxygenation
Application: Chemical Industry, Grain Transport, Mining Transport, Power Plant
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

htd pulley

How do HTD pulleys contribute to the functioning of medical and laboratory equipment?

HTD pulleys play a significant role in the functioning of medical and laboratory equipment, enabling precise and reliable movement of components and facilitating essential processes. Here’s a detailed explanation of how HTD pulleys contribute to the functioning of medical and laboratory equipment:

1. Sample Handling and Transport:

In medical and laboratory equipment, such as centrifuges and automated sample handling systems, HTD pulleys are used to drive the movement of sample holders, racks, or trays. The pulleys, in conjunction with belts or timing systems, facilitate the precise and controlled transport of samples within the equipment. This allows for accurate positioning, sorting, and delivery of samples, ensuring efficient workflows and reliable analysis or testing.

2. Fluid Handling and Pumping:

HTD pulleys are utilized in medical and laboratory equipment that involves fluid handling and pumping, such as liquid chromatography systems or diagnostic instruments. The pulleys, combined with belts or timing systems, drive the rotation of pumps, valves, or syringe drives, enabling the controlled flow of fluids. This precise fluid handling is crucial for accurate dosing, mixing, or analysis, ensuring reliable results and maintaining the integrity of experiments or medical procedures.

3. Motion Control in Robotic Systems:

In robotic systems used in medical and laboratory applications, HTD pulleys are employed to control the movement of robotic arms, grippers, or other robotic components. The pulleys, along with belts or timing systems, drive the motion of these components, enabling precise positioning, sample handling, or instrument manipulation. This contributes to the automation and efficiency of various processes, such as sample preparation, liquid handling, or high-throughput screening.

4. Imaging and Scanning Mechanisms:

HTD pulleys are used in medical and laboratory equipment that involves imaging or scanning mechanisms, such as medical imaging devices or microscopy systems. The pulleys, in combination with belts or timing systems, drive the movement of scanning stages or sample holders, allowing for precise positioning and scanning of samples. This ensures accurate and high-resolution imaging or scanning, enabling detailed analysis, diagnosis, or research observations.

5. Instrument Calibration and Adjustment:

In medical and laboratory equipment that requires calibration or adjustment, HTD pulleys are utilized to drive the movement of calibration mechanisms or adjustment components. The pulleys, along with belts or timing systems, enable precise control over the positioning and fine-tuning of instruments or sensors. This ensures optimal accuracy, calibration, or alignment of the equipment, enhancing the reliability and quality of experimental or diagnostic results.

6. Variable Speed Control:

HTD pulleys are frequently employed to achieve variable speed control in medical and laboratory equipment. By adjusting the diameter or configuration of the pulleys and selecting the appropriate belts, the rotational speed of various components, such as sample transport systems or instrument drives, can be easily controlled. This flexibility in speed control allows for customization to specific experimental requirements, ensuring optimal performance and reproducibility.

7. Customization and System Integration:

HTD pulleys offer flexibility for customization and system integration in medical and laboratory equipment. They are available in various sizes, tooth profiles, and materials, allowing for the design and optimization of pulley systems to meet specific requirements. Pulleys can be easily integrated into existing equipment or incorporated into new system designs, providing compatibility and versatility. This facilitates the development of tailored solutions for medical and laboratory applications, optimizing performance and functionality.

In summary, HTD pulleys play a crucial role in the functioning of medical and laboratory equipment. They contribute to sample handling and transport, fluid handling and pumping, motion control in robotic systems, imaging and scanning mechanisms, instrument calibration and adjustment, variable speed control, as well as customization and system integration. By enabling precise motion control, reliable power transmission, and flexibility in system design, HTD pulleys enhance the efficiency, accuracy, and automation of processes in medical and laboratory settings.

htd pulley

What safety considerations should be kept in mind when using HTD pulleys?

When using HTD pulleys, it is important to keep several safety considerations in mind. Here’s a detailed explanation of the safety considerations associated with HTD pulley usage:

1. Machinery Guarding:

Proper machinery guarding is essential when using HTD pulleys. Machinery should be enclosed or fitted with guards to prevent accidental contact with moving pulleys and belts. Guards should be designed to restrict access to the pulley area, ensuring that operators and maintenance personnel are protected from potential hazards. This helps prevent injuries caused by entanglement, pinching, or shearing between the pulleys and other objects or body parts.

2. Lockout/Tagout Procedures:

Lockout/tagout procedures should be followed when working on machinery with HTD pulleys. Before performing any maintenance, repair, or adjustment tasks, the power source should be locked out and tagged out to prevent unexpected startup or energization. This ensures that the pulleys and associated machinery remain in a safe and de-energized state, reducing the risk of entanglement or other accidents during maintenance activities.

3. Proper Training and Procedures:

Operators and maintenance personnel should receive proper training on the safe operation and maintenance procedures related to HTD pulleys. They should be educated on the potential hazards associated with pulleys, such as pinch points, rotating parts, and the importance of following safety guidelines. Training should cover topics such as proper belt tensioning, alignment procedures, and safe handling practices to minimize the risk of accidents or injuries.

4. Personal Protective Equipment (PPE):

Appropriate personal protective equipment (PPE) should be worn when working with HTD pulleys or in the vicinity of machinery equipped with pulleys. This may include safety glasses, gloves, and protective clothing to protect against potential hazards like flying debris, chemical splashes, or accidental contact with moving parts. The specific PPE requirements should be determined based on the tasks being performed and the associated risks.

5. Regular Maintenance and Inspections:

Regular maintenance and inspections of HTD pulleys are crucial for safety and optimal performance. Pulleys should be inspected for wear, damage, or misalignment, and any issues should be promptly addressed. Routine maintenance tasks, such as belt tension checks and lubrication, should be carried out according to the manufacturer’s recommendations. This helps ensure that the pulleys operate safely and efficiently, reducing the risk of unexpected failures or accidents.

6. Risk Assessment:

A comprehensive risk assessment should be conducted when working with machinery that incorporates HTD pulleys. This assessment should identify potential hazards, evaluate the associated risks, and implement appropriate control measures to mitigate those risks. The risk assessment should take into account factors such as pulley speed, pinch points, accessibility, and the overall machinery design to establish a safe working environment.

In summary, several safety considerations should be kept in mind when using HTD pulleys. These include implementing proper machinery guarding, following lockout/tagout procedures, providing adequate training and procedures, using appropriate personal protective equipment, conducting regular maintenance and inspections, and conducting a thorough risk assessment. By addressing these safety considerations, the risks associated with HTD pulley usage can be minimized, ensuring a safe working environment for operators and maintenance personnel.

htd pulley

How do HTD pulleys contribute to efficient power transmission?

HTD pulleys, which stand for “High Torque Drive” pulleys, play a significant role in ensuring efficient power transmission in various mechanical systems. Here’s a detailed explanation of how HTD pulleys contribute to efficient power transmission:

1. Tooth Profile and Tooth Engagement:

HTD pulleys have a specific tooth profile that matches the shape of HTD belts. The trapezoidal tooth profile allows for a larger contact area between the pulley and the belt compared to other pulley types. This increased contact area improves the power transfer efficiency by reducing the concentration of forces on individual teeth. The efficient tooth engagement minimizes slippage and ensures a reliable transfer of power from the pulley to the belt.

2. Precise Timing and Synchronization:

HTD pulleys and belts are designed to provide accurate timing and synchronization between the driving and driven components. The teeth of the pulley and belt interlock precisely, ensuring that the rotational motion is transferred with minimal timing errors. This precise timing is crucial in applications where multiple components need to work together, such as in robotics, automation, and CNC machines. By maintaining accurate timing and synchronization, HTD pulleys contribute to efficient power transmission without the loss of energy due to timing inconsistencies.

3. Reduced Backlash:

Backlash refers to the slight movement or play that can occur between the teeth of a pulley and the corresponding belt. HTD pulleys are designed to minimize backlash, which helps in maintaining accurate motion control. By reducing backlash, HTD pulleys prevent energy loss and ensure precise power transmission. This is particularly important in applications where precise positioning or synchronization is required, such as in CNC machines or robotic systems.

4. Load Distribution:

HTD pulleys distribute the transmitted load evenly across the teeth of the pulley and belt. The trapezoidal tooth profile and the design of HTD belts allow for a larger contact area between the teeth, resulting in better load distribution. This even load distribution helps prevent tooth wear, reduces the risk of tooth damage, and improves the overall efficiency of power transmission. It ensures that the power is evenly distributed across the pulley, minimizing any concentration of stress or load on individual teeth.

5. Material and Construction:

HTD pulleys are available in various materials, including aluminum, steel, or plastic. The material choice depends on factors such as the application requirements and environmental conditions. The selection of appropriate materials contributes to efficient power transmission by ensuring the pulleys’ durability, strength, and resistance to wear and fatigue. The use of high-quality materials also reduces friction and heat generation, further enhancing the efficiency of power transmission.

6. Belt Retention and Stability:

HTD pulleys often feature flanges on either side of the toothed section. These flanges help keep the HTD belt properly aligned and prevent it from slipping off the pulley during operation. The flanges provide lateral guidance and improve the overall stability of the belt. By ensuring secure belt retention, HTD pulleys minimize the risk of power loss due to belt misalignment or disengagement, contributing to efficient power transmission.

In summary, HTD pulleys contribute to efficient power transmission through their specific tooth profile, precise timing and synchronization, reduced backlash, even load distribution, choice of quality materials, and belt retention features. These design elements and characteristics minimize energy losses, improve power transfer efficiency, enhance system performance, and ensure reliable operation in various mechanical systems and applications.

China Professional Timing Belt Pulleys Synchronous Pulleys / Htd-5m-15, 8m-85   with Hot selling	China Professional Timing Belt Pulleys Synchronous Pulleys / Htd-5m-15, 8m-85   with Hot selling
editor by CX

2024-05-14